Understanding Molar Concentrations And how they are used to make standard solutions...

One mole of a compound has 6.02×10^{23} molecules of that compound.
One mole of a compound is also its molecular weight in grams. A one molar (1.0 M) solution has 1 mole of a solute dissolved in 1000 mL (1L) of solvent.

For example, the molecular weight of NaCl is $58.44 \mathrm{~g} / \mathrm{mol}$. Therefore,
1.0 M solution of NaCl has 58.44 g of NaCl in 1 L , or, 5.844 g diluted in 100 mL , etc.
0.1 M solution of NaCl has 5.844 g of NaCl in 1 L , or 0.5844 g in 100 mL , etc.
0.2 M solution of NaCl has 11.68 g of NaCl in 1 L , or 1.168 g in 100 mL , etc.

What if you are asked to make a $1000 \mathrm{mg} \mathrm{N} / \mathrm{L}$ solution from a known solid that contains N (e.g. KNO_{3})

1. Determine the molar weight of KNO_{3}

Element	Molar wt	Number of atoms	Total weight
K	39.098	1	39.098
N	14.007	1	14.007
O	15.999	3	47.997
Total			101.102

2. Therefore,

$$
\frac{1000 \mathrm{mg} \mathrm{~N}}{L} * \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} * \frac{101.102 \mathrm{~g} \mathrm{KNO3}}{14.007 \mathrm{~g} \mathrm{~N}}=7.218 \mathrm{~g} \mathrm{KNO} 3
$$

To make $1000 \mathrm{mg} \mathrm{N} / \mathrm{L}$ stock solution from KNO 3 , dissolve 7.218 g of KNO_{3} (previously ovendried at 105 C for 1 hr) in 1000 mL of deionized water.

Test yourself:

1. How many g of NaNO_{3} would you need to make 1 L of 1000 mg NO
2. How many g of $\mathrm{NH}_{4} \mathrm{Cl}$ do you need to make 1 L of $1000 \mathrm{mg} \mathrm{NH}_{4}-\mathrm{N} / \mathrm{L}$ solution?
