AgroEcoLab @ UMD | www.agroecologylab.com Last updated July 6, 2018

Protocol for measuring cation exchange capacity (CEC) in soils with high calcium content, such as limed, agricultural soils

Purpose

To measure exchangeable cations and cation exchange capacity.

Reagents

- 1. 0.1M barium chloride BaCl₂ (1L)
 - a. 20.82 of BaCl₂ in 1L DI water
- 2. 0.002M barium chloride BaCl₂ (1L)
 - a. 0.416g of BaCl₂ in 1L DI water
- 3. $0.005M^*$ magnesium sulfate heptahydrate MgSO₄ 7H₂O(1L)
 - a. $0.602g MgSO_4 \bullet 7H_2O in 1L DI water$

*A 0.01M solution instead (1.2g MgSO₄ \bullet 7H₂O /1L DI water) also works, just adjust the calibration curve

Procedure

- 1. Write tube number on data sheet and record weight of tube. Tare balance.
- 2. Weigh 2.00g (±0.01g) of soil in empty centrifuge tube. Record weight.
- 3. Add 20.0 ml of 0.1M BaCl₂.
- 4. Cap tube. Shake for 1 hour.
- 5. Centrifuge tubes at 4000 x g (about 6000 rpm on VWR benchtop centrifuges) for 30 minutes (remember to balance the rotor).
- Decant supernatant liquid (may be saved for exchangeable cation analysis/soil pH measurement). You may use a transfer pipette to remove the last few milliliters of supernatant if needed.
- 7. Add 20.0mL of 0.002M BaCl₂. Disperse solids with vortex mixer. Shake for 10 minutes.
- 8. Centrifuge for 30 minutes. Decant and discard supernatant.
- 9. Repeat steps 6, 7, and 8 two times.
- 10. After decanting 0.002M BaCl₂ for the third time, weigh the tube plus soil plus entrained solution.
- 11. Add 10.0mL 0.005M MgSO₄ •7H₂O. Disperse solids. Shake 30 minutes. NOTE: For critical determinations, the solution ionic strength can be adjusted at this point by matching its electrical conductivity to that of a reference solution. See Gillman 1979 or Rhoades 1982 for a description.
- 12. Let tubes stand overnight, with occasional hand shaking. This long period of equilibration is necessary to allow the Mg²⁺ ions to completely replace the Ba²⁺ ions on the exchange complex. Displaced barium ions precipitate as BaSO₄.
- 13. Centrifuge 10 minutes. Filter supernatant into a labeled bottle or scintillation vial using Whatman #42 filters.
- 14. Store in the freezer until ready for analysis.

Analysis

Analyze on atomic absorption spectrophotometer for Mg using the Air-Acetylene flame. Standards can be made in DIW and with the 500 mg Mg/L stock solution with the following standard curve. Run a reagent blank as DIW. Subtract out the concentration of MgSO₄ • $7H_2O$ in solution blank from the sample concentrations.

Calculations

The total CEC is equivalent to the mass (in millequivalents) of Mg⁺⁺ removed from solution divided by the soil weight.

- Calculate entrained solution volume: Entrained = (weight of tube + soil + entrained) - (weight of empty tube + oven-dry soil). This number represents the mass; assuming a specific gravity of 1 (close enough), it is also the volume, in mL.
- Convert mg/L to meq Mg⁺⁺ in the extract, for both the blank and the sample (remember, Mass=Concentration*Volume; this step also incorporated unit conversions for Mg meq and mL to L).

 $meq Mg^{++} = \frac{mg Mg}{L} = \frac{1}{24.305 mg Mg} = \frac{1}{x} \frac{1}{1000 mL} = \frac{1}{1} \frac{2}{1000 mL} = \frac{1}{1000 mL} = \frac{1}{1000 mL}$

3. The difference between meq Mg⁺⁺ in the blank and in the sample represents the mass of magnesium ions adsorbed onto the soil exchange complex. Divide by (dry) soil mass, convert meq to cmol (+) and g to kg, and you have CEC.

CEC (cmol(+)/kg soil)=

$$\frac{(\text{meg Mg}^{++}_{\text{blank}}\text{-meq Mg}^{++}_{\text{sample}})}{2\text{g moist soil}} = x \quad \frac{(1+w_d)\text{g moist soil}}{\text{g dry soil}} = x \quad \frac{1 \text{ cmol } (+)}{10 \text{ meg Mg}^{++}} = x \quad \frac{1000 \text{ g soil}}{\text{kg soil}}$$

References

- Gillman, G.P. 1979. A proposed method for the measurement of exchange properties of highly weathered soils. Aust. J. Soil Res. 17:129-139.
- Hendershot, W.H., and M. Duquette. 1986. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 50:605-608.
- Rhoades, J.D. 1982. Soluble Salts. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. Agronomy 9: 167-178.